Data Processing in Brain Control Interface Application

Main Article Content

Shofi Afif Hanafi
Hisyam Bin Abdul Rahmam
Dwika Ananda Agustina Pertiwi
Much Aziz Muslim

Abstract

Brain Computer Interface (BCI) is an innovation that help people with impairment to do their daily activities. BCI processed its data through several processes such as pre-processing, feature extraction, and classification. This review paper provide the process that mostly used by researchers.

Article Details

How to Cite
Hanafi, S. A., Rahmam, H. B. A., Pertiwi , D. A. A., & Muslim, M. A. (2023). Data Processing in Brain Control Interface Application. Future Computer Science Journal, 1(1), 27–34. Retrieved from https://asasijournal.com/index.php/fcsj/article/view/9
Section
Articles

References

Hamid, H., Naseer, N., Nazeer, H., Khan, M. J., Khan, R. A., & Shahbaz Khan, U. (2022). Analyzing classification performance of fNIRS-BCI for gait rehabilitation using Deep Neural Networks. Sensors, 22(5), 1932

Alzahab, N. A., Apollonio, L., Di Iorio, A., Alshalak, M., Iarlori, S., Ferracuti, F., Monteriù, A., & Porcaro, C. (2021). Hybrid deep learning (hdl)-based brain-computer interface (BCI) systems: A systematic review. Brain Sciences, 11(1), 75.

Ma, T., Chen, W., Li, X., Xia, Y., Zhu, X., & He, S. (2021). FNIRS signal classification based on deep learning in rock-paper-scissors imagery task. Applied Sciences, 11(11), 4922.

Rasheed, S. (2021). A review of the role of machine learning techniques towards brain–computer interface applications. Machine Learning and Knowledge Extraction, 3(4), 835–862.

Shih, J. J., Krusienski, D. J., & Wolpaw, J. R. (2012). Brain-computer interfaces in medicine. Mayo Clinic Proceedings, 87(3), 268–279.

Naseer, N., & Hong, K.-S. (2015). FNIRS-based brain-computer interfaces: A Review. Frontiers in Human Neuroscience, 9.

Khan, H., Naseer, N., Yazidi, A., Eide, P. K., Hassan, H. W., & Mirtaheri, P. (2021). Analysis of human gait using hybrid EEG-fNIRS-based BCI system: A Review. Frontiers in Human Neuroscience, 14.

Chen, W.-L., Wagner, J., Heugel, N., Sugar, J., Lee, Y.-W., Conant, L., Malloy, M., Heffernan, J., Quirk, B., Zinos, A., Beardsley, S. A., Prost, R., & Whelan, H. T. (2020). Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: Advances and future directions. Frontiers in Neuroscience, 14.

Herold, F., Wiegel, P., Scholkmann, F., & Müller, N. (2018). Applications of functional near-infrared spectroscopy (FNIRS) neuroimaging in Exercise–Cognition Science: A Systematic, methodology-focused review. Journal of Clinical Medicine, 7(12), 466.

Liu, J., Song, T., Shu, Z., Han, J., & Yu, N. (2021). FNIRS feature extraction and classification in grip-force tasks. 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO).

Baker, W. B., Parthasarathy, A. B., Busch, D. R., Mesquita, R. C., Greenberg, J. H., & Yodh, A. G. (2014). Modified beer-lambert law for blood flow. Biomedical Optics Express, 5(11), 4053.

Ortega, P., Zhao, T., & Faisal, A. A. (2020). HYGRIP: Full-stack characterization of neurobehavioral signals (fNIRS, EEG, EMG, force, and breathing) during a bimanual grip force control task. Frontiers in Neuroscience, 14.

Sattar, N. Y., Kausar, Z., Usama, S. A., Farooq, U., Shah, M. F., Muhammad, S., Khan, R., & Badran, M. (2022). FNIRS-based upper limb motion intention recognition using an artificial neural network for transhumeral amputees. Sensors, 22(3), 726.

Ortega, P., Zhao, T., & Faisal, A. A. (2020). HYGRIP: full-stack characterization of neurobehavioral signals (fNIRS, EEG, EMG, Force, and Breathing) during a bimanual grip force control task. Frontiers in Neuroscience, 14, 919.

Naseer, N., Noori, F. M., Qureshi, N. K., & Hong, K.-S. (2016). Determining optimal featurecombination for LDA Classification of functional near-infrared spectroscopy signals in braincomputer interface application. Frontiers in Human Neuroscience, 10.

Erdoĝan, S. B., Özsarfati, E., Dilek, B., Kadak, K. S., Hanoĝlu, L., & Akın, A. (2019). Classification of motor imagery and execution signals with population-level feature sets: Implications for probe design in fNIRS based BCI. Journal of Neural Engineering, 16(2), 026029.

A, J., M, S., Chhabra, H., Shajil, N., & Venkatasubramanian, G. (2020). Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. Biomedical Signal Processing and Control, 62, 102133.

Robinson, N., Zaidi, A. D., Rana, M., Prasad, V. A., Guan, C., Birbaumer, N., & Sitaram, R. (2016). Real-time subject-independent pattern classification of overt and covert movements from fnirs signals. PLOS ONE, 11(7).

Ong, J. H., & Chia, K. S. (2021). Principal components-artificial neural network in functional nearinfrared spectroscopy (FNIRS) for Brain Control Interface. 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT).

Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain Computer Interfaces, a review. Sensors, 12(2), 1211–1279.

Groff, B. R., Antonellis, P., Schmid, K. K., Knarr, B. A., & Stergiou, N. (2019). Stride-time variability is related to sensorimotor cortical activation during forward and backward walking. Neuroscience Letters, 692, 150–158.

Kim, H. Y., Kim, E. J., & You, J. (S. (2017). Adaptive locomotor network activation during randomized walking speeds using functional near-infrared spectroscopy. Technology and Health Care, 25, 93–98.

Shin, J., & Jeong, J. (2014). Multiclass classification of hemodynamic responses for performance improvement of functional near-infrared spectroscopy-based brain–computer interface. Journal of Biomedical Optics, 19(6), 067009.

Wriessnegger, S. C., Bauernfeind, G., Kurz, E.-M., Raggam, P., & Müller-Putz, G. R. (2018). Imagine squeezing a cactus: Cortical activation during affective motor imagery measured by functional near-infrared spectroscopy. Brain and Cognition, 126, 13–22.

Rahman, M. A., Rashid, M. A., & Ahmad, M. (2019). Selecting the optimal conditions of Savitzky– Golay filter for fNIRS signal. Biocybernetics and Biomedical Engineering, 39(3), 624–637.

Buccino, A. P., Keles, H. O., & Omurtag, A. (2016). Hybrid EEG-fnirs asynchronous brain-computer interface for multiple motor tasks. PLOS ONE, 11(1).

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain–computer interfaces: A 10 Year update. Journal of Neural Engineering, 15(3), 031005.

Elvira, M., Iáñez, E., Quiles, V., Ortiz, M., & Azorín, J. M. (2019). Pseudo-online BMI based on EEG to detect the appearance of sudden obstacles during walking. Sensors, 19(24), 5444.

Elvira, M., Iáñez, E., Quiles, V., Ortiz, M., & Azorín, J. M. (2019). Pseudo-online BMI based on EEG to detect the appearance of sudden obstacles during walking. Sensors, 19(24), 5444.

Gabrieli, G., Bizzego, A., Neoh, M. J., & Esposito, G. (2021). FNIRS-QC: Crowd-sourced creation of a dataset and machine learning model for fNIRS Quality Control. Applied Sciences, 11(20), 9531.

Tang, Z., Li, C., & Sun, S. (2017). Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik, 130, 11–18.

Ho, T. K., Gwak, J., Park, C. M., & Song, J.-I. (2019). Discrimination of mental workload levels from multi-channel fNIRS using deep leaning-based approaches. IEEE Access, 7, 24392–24403.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional Neural Networks. Communications of the ACM, 60(6), 84–90.

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Neural information processing systems, pp 3104–3112

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Zhang, H., Chen, B., Wang, Z., & Liu, H. (2019). Deep Max-margin discriminant projection. IEEE Transactions on Cybernetics, 49(7), 2454–2466.

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: International conference on learning representations

Chiarelli, A. M., Croce, P., Merla, A., & Zappasodi, F. (2018). Deep learning for hybrid EEG-FNIRS BRAIN–computer interface: Application to motor imagery classification. Journal of Neural Engineering, 15(3), 036028.