Flood Disaster Detection Based on Rainfall using Random Forest Algorithm
Main Article Content
Abstract
This research was conducted to detect worldwide natural disasters, namely floods based on rainfall, using the Random Forest algorithm. This research can also help the government estimate what will be done in the future when a flood disaster occurs. The method is to collect rainfall and flood disaster data from Kaggle. The data is then cleaned, processed, and tested for reliability. Using a suitable dataset for testing and choosing the correct algorithm can ensure that the data mining process produces accurate information. Furthermore, the Random Forest algorithm was applied to the data to classify flood disasters based on rainfall. The results showed that the Random Forest algorithm could provide flood disaster classification results with a high accuracy rate of 95.8%. The novelty of this research lies in using the Random Forest algorithm, which is rarely used in flood disaster classification research based on rainfall. This research is expected to contribute to developing a more accurate and reliable rainfall-based flood disaster early warning system.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
M, D., S, C. & C.M., B. Robust human detection system in flood-related images with data augmentation. Multimed Tools Appl 82, 10661–10679 (2023).
Nguyen, H.D. GIS-based hybrid machine learning for flood susceptibility prediction in the Nhat Le–Kien Giang watershed, Vietnam. Earth Sci Inform 15, 2369–2386 (2022).
Novandya, A. (2017). Penerapan Algoritma Klasifikasi Data Mining C4. 5 Pada Dataset Cuaca Wilayah Bekasi. Konferensi Nasional Ilmu Sosial dan Teknologi, 1(1).
Triyanto, S., Sunyoto, A., & Arief, M. R. (2021). Analisis Klasifikasi Bencana Banjir Berdasarkan Curah Hujan Menggunakan Algoritma Naïve Bayes. JOISIE (Journal Of Information Systems And Informatics Engineering), 5(2), 109-117.
Zailani, A. U., & Hanun, N. L. (2020). Penerapan Algoritma Klasifikasi Random Forest Untuk Penentuan Kelayakan Pemberian Kredit Di Koperasi Mitra Sejahtera. Infotech: Journal of Technology Information, 6(1), 7-14.
Brito, L.A.V., Meneguette, R.I., De Grande, R. et al. FLORAS: urban flash-flood prediction using a multivariate model. Appl Intell (2022).
Dwiasnati, S., & Devianto, Y. (2021). Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir. Prosiding SISFOTEK, 5(1), 202-207.
Abu El-Magd, S.A. Random forest and naïve Bayes approaches as tools for flash flood hazard susceptibility prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt. Arab J Geosci 15, 217 (2022).
Sayed-Mouchaweh, M. (2020). Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations. Springer Briefs in Electrical and Computer Engineering.
Sharma, S., Chakraborty, D., & Patil, A. (2020). Flood Prediction Using Machine Learning Models: A Comprehensive Review. Water Resources Management, 34(13), 4209-4237.
Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103-108.
Yan, X., Xu, K., Feng, W., et al. A Rapid Prediction Model of Urban Flood Inundation in a High-Risk Area Coupling Machine Learning and Numerical Simulation Approaches. Int J Disaster Risk Sci 12, 903–918 (2021).
Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: A literature review. Water, 10(11), 1536.
Keum, H.J., Han, K.Y. & Kim, H.I. Real-Time Flood Disaster Prediction System by Applying Machine Learning Technique. KSCE J Civ Eng 24, 2835–2848 (2020).
Yang, L., Li, J., Kang, A. et al. The Effect of Nonstationarity in Rainfall on Urban Flooding Based on Coupling SWMM and MIKE21. Water Resour Manage 34, 1535–1551 (2020).
T. Sharma, A. Pal, A. Kaushik, A. Yadav, and A. Chitragupta, "A Survey on Flood Prediction analysis based on ML Algorithm using Data Science Methodology," 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 2022, pp. 1-8
Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal, 20(1), 3–29.
Alexandropoulos, S., Kotsiantis, S., & Vrahatis, M. (2019). Data preprocessing in predictive data mining. The Knowledge Engineering Review, 34, E1.
Wahyuni, E.D., Arifiyanti, A.A., & Kustyani, M. (2019). Exploratory Data Analysis dalam Konteks Klasifikasi Data Mining.
Oktanisa, I., & Supianto, A.A. (2018). Perbandingan Teknik Klasifikasi Dalam Data Mining Untuk Bank Direct Marketing. Jurnal Teknologi Informasi dan Ilmu Komputer.
Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, Mishra R, Pillai S, Jo O. COVID-19 Patient Health Prediction Using Boosted Random Forest Algorithm. Front Public Health. 2020 Jul 3;8:357.
Naishvini, M., Srinithi, M.S., & Nivedita, M. (2022). Diabetes Prediction Using Random Forest Algorithm.
A Alamsyah and T Fadila. (2021). Increased accuracy of prediction hepatitis disease using the application of principal component analysis on a support vector machine, J. Phys.: Conf. Ser. 1968 012016
Walid and Alamsyah. (2017). Recurrent neural network for forecasting time series with long memory pattern. J. Phys.: Conf. Ser. 824 012038