Classifying Empathy in Textual Anamnesis using Single Layered LSTM Performance

Main Article Content

Yoenie Indrasary
Metty Verasari
Rahardian Yusuf
Ary Setijadi
Syamsudin Noor
Syaifullah Syaifullah
Joni Riadi
Joni Vidya Ikawati

Abstract

This study explores the challenges of integrating artificial intelligence (AI) in healthcare 5.0, particularly the perceived lack of empathy in AI applications and its potential impact on human connections in healthcare services. Patient-centered healthcare relies on effective communication, and the paper highlights the absence of computational studies detecting empathetic support in clinical interviews. The research distinguishes between cognitive and affective empathy, noting the medical emphasis on cognitive empathy for objectivity and detachment, while cautioning against affective empathy due to concerns about emotional strain. The proposed solution involves employing Long Short-Term Memory (LSTM) for sentiment analysis in clinical conversations, citing its accuracy and efficiency. Methodologically, the study annotates conversations for affective and cognitive empathy, performs word embedding using word2vec and GloVe, and trains the LSTM model on a dataset of medical interviews. Results suggest promising outcomes in classifying empathy levels, though limitations are acknowledged, such as the simplified empathy aspects and the need for more robust validation methods. The study contributes to the development of Vidya Medic, an AI-assisted intelligent healthcare system, with potential implications for enhancing empathetic communication in clinical settings. This experiment's findings suggest that the LSM model has been developed for the purpose of classifying empathy levels in clinical conversations. However, there are limitations to this study, including the simplification of empathy aspects, which focus solely on affective and cognitive empathy

Article Details

How to Cite
Indrasary, Y. ., Verasari, M., Yusuf, R., Setijadi, A., Noor, S., Syaifullah, S., Riadi, J., & Ikawati, J. V. (2023). Classifying Empathy in Textual Anamnesis using Single Layered LSTM Performance. Future Computer Science Journal, 1(2). Retrieved from https://asasijournal.com/index.php/fcsj/article/view/10
Section
Articles

References

A. Solikhin, G. Raharjo, dan E. Sugiharti, “Alphabet Classification of Sign System Using Convolutional Neural Network with Contrast Limited Adaptive Histogram Equalization and Canny Edge Detection,” Sci. J. Informatics, vol. 10, no. 3, hal. 239–250, 2023, doi: 10.15294/sji.v10i3.44137.

J. Al-Jarood, N. Mohamed, N. Kesserwan, dan I. Jawhar, “Human Factors Affecting the Adoption of Healthcare 4.0,” IEEE Int. Syst. Conf., 2023, doi: 10.1109/SysCon53073.2023.10131064.

K. Bhargava dan D. Bhargava, “Evidence Based Health Care: A scientific approach to health care,” Sultan Qaboos Univ Med J, 2007.

G. L. Tortorella et al., “Effects of contingencies on healthcare 4.0 technologies adoption and barriers in emerging economies,” Technol. Forecast. Soc. Change, 2020, doi: https://doi.org/10.1016/j.techfore.2020.120048.

G. L. Tortorella, T. A. Saurin, F. S. Fogliatto, V. M. Rosa, L. M. Tonetto, dan F. Magrabi, “Impacts of Healthcare 4.0 digital technologies on the resilience of hospitals,” Technol. Forecast. Soc. Change, 2021, doi: https://doi.org/10.1016/j.techfore.2021.120666.

S. Gair, “Feeling their stories: contemplating empathy, insider/outsider positionings, and enriching qualitative research,” Qual Heal. Res, 2012, doi: 10.1177/1049732311420580.

M. Schulte-Rüther, H. J. Markowitsch, G. R. Fink, dan M. Piefke, “Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy,” J Cogn Neurosci, 2007, doi: 10.1162/jocn.2007.19.8.1354.

A. Finset, “Emotions, narratives and empathy in clinical communication,” Int. J. Integr. Care, 2010, doi: DOI: 10.5334/ijic.490.

G. A. Gladstein, “Understanding empathy: Integrating counseling, developmental, and social psychology perspectives,” J. Couns. Psychol., 1983, doi: https://doi.org/10.1037/0022-0167.30.4.467.

D. G. Perry, “Altruism, socialization, and society,” Can. Psychol. / Psychol. Can., vol. 22, no. 2, hal. 203–204, 1981, doi: https://doi.org/10.1037/h0081405.

A. Zeyer, P. Bahar, K. Irie, R. Schlüter, dan H. Ney, “A Comparison of Transformer and LSTM Encoder Decoder Models for ASR,” IEEE Autom. Speech Recognit. Underst. Work., 2019, doi: 10.1109/ASRU46091.2019.9004025.

R. Pedersen, “Empathy: a wolf in sheep’s clothing?,” Med Heal. Care Philos, 2007, doi: 10.1007/s11019-007-9104-0.

J. L. Coulehan, “Tenderness and steadiness: emotions in medical practice,” Lit Med, vol. 14, no. 2, hal. 222–36, 1995, doi: 10.1353/lm.1995.0027.

J. Halpern, “Clinical Empathy in Medical Care,” Empathy From Bench to Bedside, 2011, doi: https://doi.org/10.7551/mitpress/8884.003.0020.

J. Halpern, “From idealized clinical empathy to empathic communication in medical care,” Med Heal. Care Philos, vol. 17, no. 2, hal. 301–11, 2014, doi: 10.1007/s11019-013-9510-4.

P. Berry, “From detached concern to empathy: Humanizing medical practice,” Empathy From bench to bedside, 2001.

R. C. Staudemeyer dan E. R. Morris, “Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks,” Neural Evol. Comput., 2019.

K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, dan D. Nahamoo, “Direct Acoustics-to-Word Models for English Conversational Speech Recognition,” Comput. Lang., 2017.

S. Yang, L. Jiao, dan M. Wang, “A new directional multi-resolution ridgelet network,” Front. Electr. Electron. Eng. China, hal. 198–203, 2008.

F. Alam, M. Danieli, dan G. Riccardi, “Can we detect speakers’ empathy?: A real-life case study,” IEEE Int. Conf. Cogn. Infocommunications, 2016, doi: 10.1109/CogInfoCom.2016.7804525.

A. Sharma, A. S. Miner, D. C. Atkins, dan T. Althoff, “A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support,” Conf. Empir. Methods Nat. Lang. Process., 2020.

E. C. Montiel-Vázquez, J. A. R. Uresti, dan O. Loyola-González, “An Explainable Artificial Intelligence Approach for Detecting Empathy in Textual Communication,” Appl. Sci., vol. 12, no. 19, 2022, doi: https://doi.org/10.3390/ app12199407.

H. Rashkin, E. M. Smith, M. Li, dan Y.-L. Boureau, “Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset,” Proc. ACL, 2019, doi: https://doi.org/10.48550/arXiv.1811.00207.

B. Pradhan, S. Das, D. S. Roy, S. Routray, F. Benedetto, dan R. H. Jhaveri, “An AI-Assisted Smart Healthcare System Using 5G Communication,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3317174.

C. Wang, Y. Shen, Y. Li, M. Zhang, M. Hu, dan J. Zheng, “A systematic empirical study on word embedding based methods in discovering Chinese black keywords,” Eng. Appl. Artif. Intell., vol. 125, 2023, doi: https://doi.org/10.1016/j.engappai.2023.106775.

F. Fareez et al., “A dataset of simulated patient-physician medical interviews with a focus on respiratory cases,” Sci. Data, 2022, doi: https://doi.org/10.1038/s41597-022-01423-1.